
1!

Good morning! Thank you for inviting me.!

First, let me tell you a bit about myself. I’m a user experience designer and
entrepreneur. I was one of the first professional Web designers in 1993. Since
then I’ve worked on the user experience design of hundreds of web sites. I also
consult on the design of digital consumer products, and I’ve helped a number
of consumer electronics and appliance manufacturers create better user
experiences and more user centered design cultures.

2!

3!

In 2003 I wrote a how-to book of user research methods for technology design.
It has proven to be somewhat popular, as such books go.

4!

Around the same time as I was writing that book, I co-founded a design and
consulting company called Adaptive Path.

5!

I wanted to get more hands-on with technology development, so I founded
ThingM with Tod E. Kurt.

We’re a micro-OEM. We design and manufactures a range of smart LEDs for
architects, industrial designers and hackers. We’re also spinning off a new
company that’s going to apply this technology to the consumer space. I have
lots to say about that, but this talk is about something else, so talk to me offline
if you’d like details.!

6!

This talk is based on a chapter from my new book. It’s called “Smart Things”
and it came out a couple of weeks ago. In the book, I describe an approach for
designing digital devices that combine software, hardware, physical and virtual
components.!

7!

I want to start by talking about three trends that are combining to create a new
class of digital products which are distributed through the environment and
linked by cloud-based services. These devices not only create many
opportunities for innovation, but they represent a new way of thinking about
both products and services.!

8!

9!

The first trend is a product of Moore’s Law. Normally people think of Moore’s
Law in terms of processor speed, but the same technologies that makes the
latest chips powerful push the price of older technology down. We have now
reached a point where many powerful technologies are priced like basic
commodities. For example, the Intel 486 was the processor that the Web was
built for and with. It cost $1500 in 1989. Today you can get as much
processing power for about 50 cents.!

This new System on a Chip from Microchip has about as much processing
power as that initial 486, but is also has an onboard video controller that can
drive a VGA-class screen, a USB controller for peripherals, a 24-channel
analog to digital converter for sensor, and a capacitive sensing driver that can
drive a touch screen. It costs about $5, uses less power than a keyring LED
flashlight, and fits on a chip the size of your fingernail. It’s also not unusual.
Almost every semiconductor maker makes similar products.!

This means that you can now include powerful processing and networking in
almost anything, and start rethinking the design of everything in terms of
embedded digital technology. The “how” problem of creating ubiquitous
computing has almost been answered. Now the questions are what to create,
and why.!

10!

The answer to these is being driven by two other shifts.!
First, is a shift from generic devices and software to specialized devices and
software. When computing was expensive, you had one or two general purpose
devices that had deal with almost every situation. This necessitated design
compromises that resulted in devices and software that could do almost
everything, but did none of it well. It was then up to the user to take these
generic tools and making them appropriate to the current situation.!

Now that processing is so cheap, you can have a combination of 10, 20, or 30
computing devices and apps for the price of that one device, and you can
acquire new functionality as needed. This means that every device and
software package can have a narrower purpose.!

11!

The third trend is that the lasting legacy of the Web has been a shift in the
value digital technology from being primarily local to being primarily remote.
The Web demonstrated that moving functionality online enables access to more
compute power, continuous updates, real-time usage analytics, and (of course)
social connections. It also created a shift in people’s expectations. Today, most
people understand that the experience you see on one device is often a part of
something that’s distributed throughout the world. There’s no longer a need to
pack everything into a single piece of software, and there’s no expectation that
everything will be there.!

12!

If we chart these last two tends, two broad classes of digital products emerge.!

If we follow the general to specific axis, we see a shift is to more narrow-
function devices that are designed to do a small, specific set of things really
well. They primarily differ in what those specific things are. I call these devices
appliances.!

If we follow the local to remote axis, we find general-purpose devices that do
roughly the same set of things, and differ primarily in size. They exist to
provide access to online services, in a form factor that’s appropriate to the
context in which they’re used.!
I call these devices terminals.!

13!

What I think is most interesting, however, is that these shifts appear to be the
first part an even larger transition, one where devices are simultaneously
specific AND deeply tied to online services. In this model, the service provides
the majority of the value, and can be represented either as an inexpensive
dedicated hardware device, an app running on a terminal, or anything in
between.!

It’s an approach that combines the precision of appliances with the flexibility
of terminals to create a fundamentally new class of products that can fill every
possible niche where a service may be appropriate.!

I call these devices service avatars.!

14!

As value shifts to services, the devices, software applications and websites
used to access it—its avatars—become secondary. A camera becomes a really
good appliance for taking photos for Flickr, while a TV becomes a nice Flickr
display that you don’t have to log into every time, and a phone becomes a
convenient way to take your Flickr pictures on the road.!

Hardware becomes simultaneously more specialized and devalued as users see
“through” each device to the service it represents.!

15!

For example, you can now get Netflix on virtually any terminal that has a
screen and a network connection. You can pause a Netflix movie on one
terminal and then upause it on another. This seems natural. Why?!

16!

17!

Because to the Netflix customer, any device used to watch a movie on Netflix
is just a hole in space to the Netflix service. It’s a short-term manifestation of a
single service. The value, the brand loyalty, and the focus is on the service, not
the frame around it. The technology exists to enable the service, not as an end
to itself.!

Netflix appliances are created for a single reason: to make it easier to access
Netflix. That’s what Roku does. It turns every terminal that’s not already
Netflix enabled into a Netflix terminal. The Boxee box does that for the Boxee
service. The new Apple TV does it for iTunes.!

18!

Let me give you another example. This is Vitality’s Glowcap, which is a
wireless network-connected pill bottle appliance that’s an avatar to Vitality’s
service for increasing compliance to medicine prescriptions. When you close
the cap, it sends a packet of information through a mobile phone-based base
station to a central server and it starts counting down to when you next need to
take your medicine. When it’s time, it lights up the LED on the top of the
bottle.!

However, the real power is in the packet of data it sends. That packet opens a
door to the full power of an Internet-based service. Now Vitality can create
sophisticated experiences that transcend a single piece of software or a single
device. !

19!

For example, another avatar of the Vitality service is an online progress report
that can be used interactively or delivered by email. It’s like Google Analytics
for your medicine.!

20!

Health care practitioners get yet another avatar that gives them long-term and
longitudinal analytics about compliance across medications and time.!

To me, this kind of conversation between devices and net services is where the
real power of The Internet of Things begins.!

21!

Vitality has developed a complete system around this service that includes a
social component, and different avatars for patients, patients families, health
care practitioners and pharmacies. Each avatar looks different and has different
functionality, but they’re perceived, and designed as a single system.!

22!

I think it’s a model of how many everyday things are going to be designed in
the future.!

Soon designing objects that have significant social lives in the cloud will
become just how everything is made.!

Terminals, such as what we call smart phones or connected TVs, will of course
be part of this world—they will be!

23!

So if you’re a developer I recommend you shift your thinking away from
whether to make an app, a mobile web site, a platform, or a dedicated device,
and to start thinking about how you design your service, and what avatars will
best facilitate that service.!

24!

But what does the operating system that enables this kind of service avatar
model look like? What is the infrastructure that makes a service avatar
ecosystems functional and profitable? How does it incentivize developers to
create services for it?!

I made a list of the qualities of a service avatar operating system that I believe
are important. And before I give you that list, I want to warn you: I’m not a
mobile developer, and I’m not much of a mobile designer, but I’ve designed a
lot of user experiences across a wide range of devices and have felt the
frustration of infrastructures that prevent me from meeting my business goals,
rather than supporting me as I try to build products that people will like and
pay for.!

So please excuse me if the following ideas are obvious, or wrong or obviously
wrong, but I wanted to give you some things to think about, or argue over
lunch as we contemplate the near future of digital technology.!

25!

The service avatar operating system I’m thinking about will need to support
experiences that span devices as a core part of its services, on a layer that’s
largely invisible to users and developers, like providing network connectivity
or memory management. Inter-device experiences should be part of the basic
value proposition. Doing something like the Netflix pause, or how the Kindle
service automatically opens to the last page you looked at, regardless of what
avatar you last used, should be almost free. I should be able to take an
experience on one avatar and throw it onto another one and have it just work.!

The interaction techniques for this have existed for a long time. Jun Rekimoto
of Sony had pick and drop--where you pick up a window from one device,
“carry it” in a stylus that conceptually serves as a temporary container, and
drop it on another device--working in Sony’s labs in 1997. There are dozens of
methods to create a single experience that transcends multiple devices, but
they’re all incredibly hard to implement, because they have to be done from
scratch. This OS needs to make it so easy to create such experiences that you
forget about it.!

26!

As the number of devices and services increases, so does the number of people
using each device or service. Problems of identity and control appear. This
service avatar operating system will make it very clear about who is in control
of what avatar when, how much of their personal information is being utilized
at the moment, and how to shift the locus of control from one person to
another. Think of how the locus of control shifts in a business meeting, or
friends talking to each other on the subway.!

Video games are the model here. They have been multiuser experiences for a
long time. One thing to learn from video games is that this is not a n-person
problem. We’re not talking making systems that can scale from one person to a
stadium at the blink of an eye. Instead this operating system should make it
easy for, say, five people to have an experience together using a variety of in-
person avatars, and perhaps a couple of dozen folks peripherally participating
online.!

This operating system will make it easy to create such experiences by taking
care of synchronizing everyone’s avatars and managing identity. Smart phones,
or whatever the device is that smart phones become, play a particularly
important role here as proxies for identity. As personal terminals, they’re the
perfect locus for doing all of this identity management, even if they’re not the
primary avatar that the group interacts with.!

27!

Most digital experiences are designed by the people coding them. Interaction
designers are few and typically overworked. A service avatar operating system
will have to make it very easy for engineers to create avatar user experiences
that don’t suck. These experiences don’t have to be super awesome, but it has
to be easy to make an OK one without really thinking hard about UX design.!

One way to do this is through the application of draconian standards and to
have an enforcement mechanism. The other way is to make tools that make it
easier to do the right thing than to do the wrong thing. Developers know what a
good interface is, but they may not have the time to design an elegant one from
scratch. Good, well-constrained, design tools will both enforce good
experience design hygiene and describe what that is.!

For service avatars this is more than just creating a widget library and a layout
tool. It means creating tools that allow developers to explore experiences as
they are lived in all avatars, rather than just how the pixels are laid out on one
terminal or another. This is a slide of d.tools, a project that was developed at
Stanford’s d.school. It integrates in a single environment a hardware
prototyping and programming environment, usability testing that synchronizes
people’s actions with video of their actions, plus a facility for analyzing the
relationship between the two. It also has a great learn-by-doing system. You
can, in effect, say “When I hold the device like this, and I hold this button
while shaking it like this…that’s how I want to trigger some effect.” I think it
really points the way to what a future ubiquitous computing development
environment looks like.!

28!

My imagined service avatar operating system supports both terminals and
avatars using essentially the same code. And I don’t mean this in an abstract
“hey, it has a linux kernel” way. I mean that from the developer’s perspective,
the same environment can be used to develop for a wide variety of devices, and
the operating system abstracts the vast majority of differences away, leaving
only the appliance-specific functions, which should be easy to identify.!

A developer should be able to quickly deploy a new service idea on a terminal
platform, say, a phone or a TV, and then, if it takes off, deploy a specialized
avatar that does that one thing particularly well. Say my prosumer photo
sharing app becomes a big hit; I should be able to make a deal with Sony to
deploy a cobranded version of their high resolution camera that will natively
runs my app and be able to release it nine months later because it uses most of
the same technology as the app running on my phone. Yeah, sure, the camera
also work like a smartphone, but who cares? Pretty soon anything will be able
to run anything, that’s to be assumed. The question is: what is it good for?!

We have the technology and infrastructure for this. What’s missing is an easy
way to tie to together.!

29!

I’m a big fan of fast failure. The faster you can make an idea fail, the faster you
move on to the next idea, which will hopefully fail less fast. Eventually you get
ideas that take a really long time to fail. We tend to call those successes.!

In today’s technology marketplace, developers should be able to succeed or fail
quickly. This requires an ecosystem where new service and avatar ideas can be
quickly developed, quickly deployed, easily evaluated and rapidly updated. A
service avatar operating system has iteration of business models a core part of
what it delivers. This is what we have learned from the success of Web 2.0
startups: fast development, deployment and usage analytics are the key to
identifying the key combination of designs and features that represent market
success. People talk about what pieces make up the magic of successful
products and companies: is it the social graph, is it the technology, is it the
design? I think that in most cases it’s the ability to rapidly iterate on a business
model.!

This, by the way, is an image of a project by a British furniture designer
[NAME?] who spent a year making one chair per day out of other chairs he
found on the street.!

30!

In a service world, microtransactions are king. The current app market is
flooded and apps that are getting cheaper all the time. That does not bode well
for most app developers because acquiring new users becomes increasingly
expensive while per-user value stays the same or falls. It’s a losing game. I
think this create a significant opportunity for an operating system that wants to
compete with the two app-based OSes in terms of attracting developers.!

If you look at a traditional service, such as a credit card, the basic service is
free, but the ongoing revenue stream of small transactions creates a revenue
stream that’s not based on new user acquisition. Microtransaction management
at the operating system level opens up the practicality of services that have
exponentially growing revenue with a linear customer acquisition effort.!

31!

What all of this adds up to is an ecosystem where services are the key creators
of value for developers. The operating system provides the necessary
infrastructure for developers to build services on top of. It does not build the
services for them. It serves no map tiles, or address books. Those are all
services that it enables someone to build and charge for. It primarily exists to
enable the easy creation, deployment, monetization and interoperation of such
services and their avatars.!

This model shifts the burden of identifying user needs and meeting those needs
to developers, and rewards them with continuous sources of revenue.!

Ultimately this shift to services and avatars is being driven by technology and
people’s changing use of it, but for an operating system to be successful it only
needs to do one thing: it needs to create a great user experience for its
developers. That means giving them great developer tools, lucrative business
models and then getting out of their way.!

32!

33!

Thank you.!

