

1

Cover Page

Title of submission: Guidelines are a tool: building a design knowledge management system for programmers

Category of submission: Design Practice Study

Name and full contact address (surface, fax, email) of the individual responsible for submitting and

receiving inquiries about the submission: Mike Kuniavsky, 707 NW 19th Ave, Portland, OR 97209, +1

415.235.3468, mikek@orangecone.com

2

Guidelines are a tool: building a design
knowledge management system for
programmers

Abstract

This case study describes the creation of an internal

design knowledge management tool for web developers

as a means to encourage user-centered development

practices. With a goal to shift a software development

culture from waterfall-style to user-centered practices,

the repository of knowledge and code is created as an

incentive for programmers to create interfaces in a

user-centered and consistent way.

Several experimental techniques are used in

development of the tool. The process treats software

developers as a user group and approaches the

creation of design guidelines as if they were a product.

In addition, the use of agile software development

techniques, as driven by interaction and interface

design, coupled with off-the-shelf blog software as a

extensible, lightweight content management system

makes this an experiment on multiple levels.

Results about the success of the experiment are still

pending, but the authors are optimistic.

Mike Kuniavsky

Consultant

707 NW 19th, #302

Portland, OR 97209 USA

mikek@orangecone.com

Srinivas Raghavan

Staff Human Factors Engineer

Qualcomm

Wireless Business Solutions

Building L

5775 Morehouse Dr.

San Diego, CA 92121 USA

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright © 2005 AIGA | The
professional association for design.

3

Keywords

Design Management, Interaction Design, Agile Design,

Process Innovation, Program Management, User-

Centered Design, Web Design

The Problem: waterfall development leading

to design inconsistency

Qualcomm Wireless Business Solutions' (QWBS) web

application software development team has been using

a traditional waterfall process [10] from its inception

several years ago. Initially, there were no user

interface designers assigned to the team, and UI

designs were inconsistent and often not to the desired

level of quality. As designers were introduced, they

were tasked to design the application user interface

based on detailed product requirements documents

that had been approved by a stakeholder team.

Subsequently, the stakeholder team had to sign off the

user interface design before the development team

began working on their low-level software design

document. The QA team then created test plans to

validate compliance with the UI specification and

product requirements documents. There was little or no

user validation of the requirements or the design and

no emphasis on consistency across designs.

Sporadically, as resources allowed, the design team

conducted usability tests and user surveys to gather

feedback on the current product and future designs.

The entire process was highly document-centric and the

UI design specification was managed under a change

control process. The motivation behind this rigid

process was largely to minimize iteration and maximize

consensus from internal stakeholders. Involving the

users was a desirable but not a required task of the

design team.

As the single design team began to service the needs of

multiple applications and members of the team were

dedicated to specific applications, design resources

became constrained. To create the interfaces required

for all of the projects, programmers would continue to

have to do UI design, as they had done before the

design team was formed. The guidelines project started

as an effort by the UI designers to maintain consistency

and reduce the time required by developers to produce

applications from UI design specifications. Initially, the

goal was to minimize iteration, maximize specifications,

and maintain the formal sign-off process. The original

design guidelines was a CSS style sheet developed by a

designer and used by developers whenever an element

of the style sheet was referenced in the UI design

specification document. As more developers worked

with the design team, the Human Interface Guidelines

(or HIG, as it came to be known) contents grew from a

style sheet to include buttons and other graphic

elements. Subsequently we added commonly used

visual elements to display data such as tables, lists,

detailed data presentation, maps, etc.

As the HIG project grew so did people’s expectation.

Was it “guidelines” or a mandate? How do you evaluate

the “guidelines”? Who should own it? Who should

review it? … As it grew we changed our thinking about

the guidelines less as supports for the current process

and more as tools for introducing iteration into the

design process. This brought us to the point where we

started on the new HIG project in August 2004.

4

The immediate goal was to support programmers doing

detailed UI design and Quality Assurance teams

evaluating completed products. The HIG was to distill

and document standard UI elements and practices, to

simplify specifications and to encourage standards that

support the reuse of code and designs. A secondary

goal was to produce a product that was flexible,

immediately useful and an example of user-centered

development.

Research

Early on, we recognized that our biggest challenge was

the reluctance of developers to enthusiastically adopt

design standards. There are many design documents

that describe design "rules" and best practices. In our

experience, however, in practice such guidelines are

used infrequently, regardless of the quality of the

recommendations. Writing yet another standards

document in light of how programmers used (or didn't

use) others seemed inefficient, at best.

We decided to treat the guidelines as a product and to

design them in a user-centered way, with developers as

our user market.

Guidelines are a product: competitive analysis

Our first goal was to understand why most guidelines

seem to fail. Resource limitations did not allow for

extensive research, so we decided to review the

existing guidelines and analyze similar guidelines to

understand what had been done, and we interviewed

some developers to understand why they had failed.

We examined the current HIG. We determined that the

document had some information architecture issues

that made access difficult, but that it contained

reasonable advice that, if followed, would produce

decent interfaces most of the time.

Our goal then became to understand how to deliver this

information so that developers would want to follow the

guidelines. To do this, we compared the HIG to a

selection of popular interface guidelines across a

selection of UI-design disciplines. We examined

guidelines from Apple [1], PalmSource [2], Sun [3],

KDE [4], usability.gov [5] and remotecontrol.pbs.org

[6].

Our survey showed a number of issues:

 Guidelines are typically presented as rules.

Developers are intimately familiar with the fact that

every development situation requires tradeoffs. When

best practices are presented as immutable rules, it

creates internal contradictions. Usability.gov [5] states

"Establish a high-to-low level of importance for each

category and carry out this approach throughout the

entire Web site."

 Guidelines are often not written in developer-

friendly language. Designers or technical writers write

most guidelines from their own perspective, rather than

developers'. For example, the Java guidelines [3]

recommend that when designing icons, "Keep the

drawing style symbolic, as opposed to photo-realistic."

 Guideline collections are long. It's not unusual for

guidelines documents to run into the hundreds of

pages. That may be required to document all of a

system's interface functionality and it may be valuable

to look up a detail or read about broad design

philosophy, but it's daunting for a developer looking for

a solution to a medium-sized problem..

5

 There's little incentive to comply. The documents

themselves offer little incentive for people to read them

and comply with their recommendations. There is

generally some text in the preamble about why

compliance is a good idea, but the rest of the document

speaks only of painful necessities.

Developers are users: interviews

We next went to the source, turned our user research

techniques inward [17], and conducted interviews with

experienced developers. These took the form of phone

calls, questions to mailing lists and a lunch. The

interviews, although unstructured, showed a

consistency in terms of identifying developers'

frustrations with guidelines.

Our interviews reinforced our impression of a systemic

problem with UI design guidelines. In general,

developers didn't really use a lot of UI guidelines. They

regularly refer to documentation to get information

about how to do something technically, but not how it

should be designed to work for the end user. Once it

works, it's considered done.

On a mailing list [7], a programmer listed his

preferences for UI development, which summarized the

points that a number of other developers had made:

1. Give the problem to someone else

2. Give me a way to auto generate the UI

3. Give me example code so I can cut and paste

4. You design it in a way I can understand and I will

implement it [15]

Underlying this list is the idea that creating a good UI is

not his primary job (which it isn't), and he doesn't want

to have to worry about it, but if he does, then he wants

it to be as little additional work as possible.

Conclusion: Guidelines-as-rules are extra work,

tools are better

"All developers building applications for Mac OS X

should read and become familiar with the contents of

this document."

—Apple Human Interface Guidelines [1]

"Ignore the guidelines, and you invite user frustration

and confusion."

—PalmOS Guidelines [2]

Guidelines which are rules tend to be underused. There

was nothing inherently wrong with the guidelines the

various documents presented, or even how they were

written. But rules need to be followed at all times.

Rules are extra work. Software development is always

behind schedule, and additional work is going to be

resisted.

In our own experience, when developers are forced to

use them, such guidelines do not produce particularly

good solutions and tend to be followed literally and

superficially, at best.

Furthermore, guidelines creators do not treat

developers as users. This creates a several systemic

problems in the guidelines documents:

 They fail to address the day-to-day needs of

software developers

 They grow obsolete, since there's little incentive to

update them by the people who are their audience

6

 There's little incentive for compliance

 They are treated as reference documents, rather

than being integrated into the development practices

and workflow that would encourage their adoption

 They are written as textbooks for interface

designers

In other words, they're not tools that are designed for

the usability of their target audience of developers.

The quote that starts this section is an example of an

unreasonable demand that a guidelines document

places on its developer audience. Developers are busy

people and memorizing the details of Apple's 300-page

document is unlikely.

Based on this review, we came up with some

"guidelines for guidelines," which are available in

Appendix A.

A final observation is that toolkit-based guidelines

appear to work better than lists of rules. Apple has a lot

of success getting developers to create consistent

interfaces by backing up their rules with a toolbox of

interface elements and development tools ([8] and

Figure 1). PBS does this, also (see [6]). These make it

easier to create decent Macintosh interface designs

than to create bad ones.

Figure 1. Apple's Interface Builder's "Snap to Aqua Guidelines"

feature [8], showing correct placement of a checkbox relative

to edges of the window.

This insight led us to think of the guidelines that we

were building as a kind of tool, and to focus our efforts

on creating something that felt more like a tool than a

document, more like an assistant than a headmaster.

Solution: a design knowledge management

tool for developers

Our goal was to make development more consistent by

creating incentives, rather than constraints; to make

following guidelines easier than not following them.

Based on our research conclusions, we decided that the

governing principle was to create a design knowledge

management tool for developers. We decided it would

have the following qualities:

 A knowledge repository. It's the central place for

knowledge about UI design within the constraints of

QWBS's users' needs and how to solve them.

7

 A tool. To make it a tool, it needs to support the

developers' workflow, rather than creating additional

work.

 Highly functional. The tool needs to focus on core

tasks, specifics and immediate solutions, not abstract

principles.

 Flexible. We didn't know what would work for

developers and didn't want to be too attached to our

vision of the perfect solution. This was our first shot at

solving this problem, so the tool needed to be easily

tuned to what would actually work.

We wanted developers to use the tool immediately and

modify it as needed. To do this, we decided it would:

 Provide boilerplate HTML, CSS, ASP and JSP code

 Provide details, examples and context to clarify

interaction design documents and ideas

 Be QWBS-specific and document local UI design

decisions and practices, rather than replicating content

that existed elsewhere

 Allow users to add to and expand the knowledge

contained in the HIG by themselves

 Make printer-friendly versions of all pages

Information Architecture

As a first pass, we wanted to focus on reorganizing

existing content and creating ways of enhancing its

value, rather than creating new content.

The original HIG had been organized into two main

sections, Templates and Topics. We thought that

"Topics" was too generic. We went through the

existing content and grouped it into clusters that we

felt fit developers' needs, then named the clusters (see

Figure 2). The four primary sections are:

 Components. We defined these as groups of basic

UI elements that together make up a single unit of

functionality from the perspective of the user. For

example, drop down boxes, buttons and form fields

would not be components in themselves. The search

box—a group of drop-downs, form fields and a button—

is a component because it defines a single task from

the user's perspective.

 Templates. Carrying over an idea from the current

HIG, these are examples of UI designs using

Components, with the components called out and

linked to the extended descriptions.

 Practices. These are QWBS-specific ways of

handling functionality that cross a number of templates

or components. Error handling, validation and the

Qualcomm-specific meaning of different colors are

examples of practices.

 Design principles. These are general principles of

good user interface design, and are not Qualcomm-

specific. For example, "the use of color in UI design"

would be an appropriate design principle, coupled with

a link to the Qualcomm-specific color practice

mentioned above.

8

In addition, each document type was divided into its

own content sections (see Figure 3). For example,

Templates pages had sections for:

 Associated Files. Links to code that's either used in

the template or produces the template.

 Related Templates. Links to alternate or important

supplementary templates.

 See Also. Links to relevant Practices and Design

Principles.

 In Use. Links to examples of this template, or

something similar, working in a QWBS product.

Figure 2. QWBS HIG Information architecture. Diagram by Nadav Savio of Giant Ant Design

9

Interaction Design

The site was supposed to be a familiar, and easy, web

experience. To facilitate this, we used several common

design conventions:

 Left-hand navigation [18], with main navigation on

the left, in order of decreasing importance, set off with

a different background color, and a top bar with a title

and search field.

 One level of hierarchy that appears indented in

subsections, with the current section highlighted and

non-clickable. [20]

 "Home" always visible on the upper left,

 The most important information is above the fold to

the right. [21]

 Comments at the bottom of every page, except the

front door.

 Printable versions available from the upper right

corner.

Figure 3. HIG template wireframe. Diagram by Nadav Savio or

Giant Ant Design.

10

Process: Agile design

A philosophical cornerstone to the development of this

project was the use of agile development methods [9].

Agile is the name of label describing a family of

software project management and development

practices that attempt to address problems with

design-first/build-later software development, (such as

the waterfall model) described earlier. Agile

development does not require research and design to

be completed or a detailed paper trail and explicit

signoffs before development starts. Instead, agile

methods focus on extensive communication and rapid

iteration, knowing the goal, but continuously collecting

information adjusting to it, rather than planning the

entire process in advance

There are a number of agile methodologies: Extreme

Programming [11], Scrum [12], the Crystal Methods

[13], etc. We chose to use a set of practices adapted

from Extreme Programming (XP). The practices we

used can be grouped into three broad categories:

 Rapid iteration

 Focus on user goals

 Continuous communication

Rapid iteration: one-week cycles and minimal problem

solving

We worked in one-week cycles. We made many small

changes and integrated them continuously into the

product. This allowed us to always have a product that

was always functional, even if not all of the features

ware hooked up or worked as designed.

We also designed quickly, creating much of the design

in collaborative design sessions around a white board.

Based on these, we created mockups and walked

developers through them.

Starting a couple of weeks into code development,

there was always a functional version of the software

that was accessible to everyone involved, with an ever-

increasing set of functionality. One of the first pieces of

functionality we built, for example, was the ability to

enter content into the system. The entry screen was

basic and users had to use a markup language, rather

than fill-out forms, but people were able to start

entering content and providing feedback almost

immediately.

Embracing another agile practice, we focused on doing

the minimum necessary to satisfy functionality goals.

Rather than trying to solve the general case, we solved

for the immediate problem. For example, although we

intended to have different permission levels (for people

creating core content versus those using it primarily as

a reference), at first we only had one account and

trusted that everyone would respect each other as they

used it. They did. We made other account levels

eventually, but this saved time, put the product into

users’ hands earlier and allowed us to see what

permission structure really made sense. We also kept

this in mind when creating our information architecture,

which was designed for the content we knew we were

going use, rather than an arbitrarily large set. If we

had much more content than we had bargained for,

then that would be a sign of success and we could

address the issues then.

Focus on user goals: stories and prioritization

We interpreted every decision in terms of its effect on

user goals using two practices:

11

 All functionality was defined from the user’s

perspective

 Weekly prioritization

All functionality was described in terms of user stories.

XP defines user stories like this:

Each User Story is written on a Story Card, and

represents a chunk of functionality that is

coherent in some way to the customer. [14]

XP recommends using paper index cards, one per story,

but our story cards were lines in a spreadsheet that we

passed back and forth. Figure 4 is example from the

week of November 15, 2004, about a month into

programming.

Figure 4. QWBS HIG User Stories.

In the spreadsheet, "name" is the user story. We used

two broad user classifications—User and Editor—to

describe functionality. Whenever any functionality was

discussed, we always tried to describe it from the user’s

perspective, and every idea for functionality was

captured as a story. This helped bring perspective to

solutions for which there was little need: if there was

no good way to justify it in terms of a reasonable-

sounding user story, then we hadn’t defined the

functionality enough. For example, one suggestion was

to implement a markup language for defining different

classes of content presentation in a broadly flexible

12

way. It sounded interesting, so we wrote two user

stories for it: one for the broader idea and one for

markup that described our immediate needs. The

immediate story got prioritized high early on and

implemented. We've never missed the broader

functionality.

Admittedly, the process occasionally produced funny-

sounding entries, but it was overall an excellent

practice to focus on appropriate functionality and to

make sure that no ideas were lost.

The second practice, prioritization, was more

straightforward. We discussed user stories every week.

Based on what had been accomplished, what problems

had been encountered, and what new ideas had been

described, we would decide what had to be done the

following week. In the spreadsheet above, weeks are

delineated with green horizontal bars. This did not

create the typical infrastructure-first flow of features for

the HIG programmer because it emphasized the user-

experience over traditional programming practices, but

it allowed us to focus on the most important end-user

features first. For example, we started by working on

the display of the key pages before the backend

database that would generator those pages. This can

be compared to painting the kitchen before the roof is

installed, but we're not building a house. Early

emphasis on core user functionality gave us something

we could immediately show the end-users to verify that

we were on the right track.

Continuous Communication: IM and velocity

Traditional XP practice requires everyone on a team to

be in the same room and that all programming (and, by

extension, design) be done in pairs. Our team was

distributed all over the world, so this was impossible,

but excellent communication was still critical.

We communicated with instant messaging and weekly

conference calls. We always had instant messaging

running, included each other in our buddy lists, and

messaged frequently throughout the day. These chats

allowed us to make small corrections and clarifications,

to exchange and collect functionality ideas and

questions, to reprioritize in between the weekly calls,

and to make major judgment calls on the fly in several

cases.

Another XP communication and project management

practice that proved useful was the measurement of

velocity. Velocity is a planning tool that measures how

much gets done in a typical week to help a group of

people understand their own workflow. Velocity is not

an idealized performance metric such as a man-hour or

the number of lines of code. It's calculated for every

development team and for every project that team

does.

We gave every user story a point rating from 1 to 5

that represented how much effort we estimated it

would take to implement it. 1 meant very little effort

and 5 meant a lot of effort (occasionally there was a 0

when the story was covered by other functionality,

though we still listed the story, since it was part of the

user experience). These values are documented in

Column D of the spreadsheet above. Then we let

development happen.

At the end of each week, we added up the points for

the user stories completed that week. After a while, we

got better at estimating points and how many points

represented a reasonable amount of work for a typical

13

week. This greatly helped prioritization, since everyone

was able to see whether a story was doable based on

what else was on the schedule for that week. There

was rarely a question of trying to squeeze things in: we

averaged about 6 points per week, and if something

took 3 points and we were already at 5 points, it wasn’t

going to happen until the week after, unless some

other story was removed.

One way of helping maintain velocity was to avoid

reinventing the wheel. This led us to base the HIG on

Movable Type blog and lightweight content

management software [19]. It provided enough

functionality and flexibility that we could use its

comment and search facility immediately and rapidly

build custom content templates. We also used several

open source Perl libraries.

Results

This is a work in progress and an experiment. Although

the original focus of the HIG was to minimize iteration

in the software development process (i.e., between the

Requirements, Design, Development and QA teams), it

became part of a broader effort to break down the

waterfall method of interface design and support a

broader effort to encourage user-centered

development. As this is really a deep cultural shift, we

tried to set realistic expectations.

Current impact is minimal, since teams started using

the product only in the spring of 2005. We anticipated

that adoption would be slow and use of this tool will

have to be seeded to teams that were willing and able

to try it. Some eager development teams are unable to

use the tool because the guidelines content are too

different from the applications they're currently

developing. Implementing the design guidelines on one

or more projects is our next step and we are

endeavoring to make the guidelines worthwhile for

more development teams to adopt.

We are in the process of conducting usability studies on

the current design to determine how well the interface

works. We're getting positive feedback from

developers, but the most positive sign that there's core

value to the tool-based approach is that another

development team—not the one we had initially chosen

to use the HIG—are enthusiastically using our blog

software and templates to create a technical

documentation reference tool.

Lessons learned

Cultural change is hard. It's even harder than we had

anticipated. We learned many lessons from this

project. Here are some:

1. Document maintenance needs to be built into the

process. From the beginning, we knew that it

would be an issue, but we didn't know how much.

To manage it, we have created a dedicated “HIG

manager” position and assigned a resource

dedicated to this effort.

2. Constraints can be useful. There are always

resource constraints in any project. In this case,

treating this effort as an experiment and self-

imposing time and functionality constraints proved

valuable. The constraints forced us to prioritize

higher the features that created the most user

experience value, and made it easier to justify the

scope of the project to management.

3. Agile development philosophy, applied to user

experience development, helps scale expectations

14

with all stakeholders and to focus on the most

important features early in the process. However,

Extreme Programming does little to define the user

experience, so we had to continuously improvise

based on the goals of the process, rather always

just following the XP practices literally.

4. Our biggest challenge was keeping our minds open

about the purpose of the HIG and reminding

ourselves that it's not a solution. It's a tool that

supports a set of development practices. We

regularly reminded ourselves that there were many

parts to that process.

In general, we're satisfied. The process was

straightforward, effective and repeatable. The creation

of content documenting the current design standard

was also a good place to start and could also easily be

easily repeated with other designs. However, having a

more defined evaluation plan from the beginning could

have been valuable. The process allowed us to create

an infrastructure and practice in implementation of the

tool. The core issue of ensuring that programmers

design interfaces in a user-centered way was not

solved, but the tool encourages developers to design

consistently, which we consider a step in the right

direction.

Next steps

The HIG is primarily a new method of accessing status

quo UI designs, which are in need of revision. Now

that the tool is done, the content needs to be upgraded

before being applied to any new products. After we

complete a revision of the content and create a HIG 2.0

based on the visual design of a new product currently

under development, we will roll it out to select

development teams. We will iterate on the design of

the HIG based on their feedback and on planned formal

evaluation of both the 1.0 and 2.0 versions.

Subsequent iterations will include revisions of key

interaction design components and further revisions of

the HIG.

References
[1] Apple Computer, Human Interface Guidelines,

http://developer.apple.com/documentation/UserExperi

ence/Conceptual/OSXHIGuidelines/index.html

[2] Ostrem, Jean, Palm OS User Interface Guidelines,
PalmSource Inc., 2003

[3] Sun Microsystems, Java Human Interface

reference,

http://java.sun.com/developer/techDocs/hi/, accessed
June 30, 2005

[4] KDE Usability Project, KDE User Interface

Guidelines, http://usability.kde.org/hig/current/,
accessed July 1, 2005

[5] National Cancer Institute, Research-Based Web

Design & Usability Guidelines,
http://usability.gov/guidelines/, accessed July 1, 2005

[6] PBS and Adaptive Path, Best Practices for PBS

Member Stations,
http://www.pbs.org/remotecontrol/bestpractices/

[7] Agile Usability (mailing list)

http://groups.yahoo.com/group/agile-usability/,
accessed July 1, 2005

[8] Apple Commputer, Interface Builder,
http://developer.apple.com/tools/interfacebuilder.html

[9] Wikipedia, "Waterfall Model," Wikipedia: the free

encyclopedia,

http://en.wikipedia.org/wiki/Agile_software_developm
ent, accessed June 27, 2005

[10] Wikipedia, "Waterfall Model," Wikipedia: the free

encyclopedia,

15

http://en.wikipedia.org/wiki/Waterfall_model,
accessed June 27, 2005

[11] Beck, Kent and Andres, Cynthia. Extreme

Programming Explained: Embrace Change (2nd
Edition), Addison-Wesley, ISBN 0-321-27865-8, 2004

[12] Schwaber, Ken and Beedle, Mike, Agile Software

Development with SCRUM, Prentice Hall, ISBN 0-321-
27865-8, 2001

[13] Cockburn, Alistair, Crystal Clear: A Human-

Powered Methodology for Small Teams, Addison-
Wesley, ISBN 0-201-69947-8, 2004

[14] Cunningham, Ward, "User Story," Portland

Pattern Repository, http://c2.com/cgi/wiki?UserStory,
accessed June 30, 2005

[15] Borlin, Phil (paraphrasing O'Byrne, Brian), Agile

Usability (mailing list),

http://groups.yahoo.com/group/agile-

usability/message/339, August 10, 2004; accessed

July 1, 2005

[16] W3C, "Cascading Style Sheets, Level 2 Revision

1," http://www.w3.org/TR/CSS21/, accessed July 1,
2005

[17] Kuniavsky, Mike, "Reverse the Polarity!" talk for

New Paradigms in Using Computers conference, IBM

Almaden Research Center, unpublished (available from
author), 2003

[18] Nielsen, Jakob, Designing Web Usability: The
Practice of Simplicity, Indianapolis: New Riders, 2000

[19] Six Apart, Movable Type (software),

http://www.sixapart.com/movabletype, accessed July
1, 2005

[20] Czerwinski, M., Larson, K., and Robbins, D.

(1998). "Designing for navigating personal Web

information: Retrieval cues," Proceedings of the

Human Factors and Ergonomics Society 42nd Annual
Meeting, 458-462.

[21] Nielsen, Jakob, Homepage Usability: 50 Websites
Deconstructed, Indianapolis: New Riders, 2001

Appendix A: Guidelines for Guidelines

Based on our review, we came up with some

"guidelines for guidelines". In our view, in addition to

all of the other best practices for internal documents,

UI guidelines need to be:

1. Designed for developers. Programmers are the

users of guidelines. The structure of a tool for

them should be built around their needs.

2. Focused around tasks, rather than design

elements. The practice of writing software is

different from that of designing interfaces, and

should be reflected in how documentation for it is

structured.

3. Specific, not principles. Programming is an applied

art, and specifics address developers' needs better

than theories. Examples that resemble the current

situation make it easier to understand the theory

and make applying the guideline easier.

4. Prioritized. Design and development is a web of

choices, and explicit prioritization helps make some

of those choices. Not all guidelines have equal

impact.

5. Succinct. Extra words won't get read and

supplementary diagrams will not get examined

when the reader is in a hurry, and the reader is

always in a hurry.

Appendix B: Development team

Our core team consisted of a visual designer, an

interaction designer/project manager, a programmer, a

content specialist and a project lead. The first three

roles were filled by contractors (Kuniavsky was the

interaction designer/project manager), the latter two

by Qualcomm employees (Raghavan was the project

lead). Nadav Savio of Giant Ant Design as the visual

designer and production specialist, Tim Appnel of

16

Appnel Internet Solutions was the core programmer

and Dave O'Brien was Qualcomm's content specialist,

who created most of the content for the site.

Contact info:

Nadav Savio, <nadav@giantant.com>

Tim Appnel, <tim@appnel.com>

Appendix C: Homepage Design Evolution

Original. The last version of the guidelines before the start of this project.

17

Wireframe. The wireframe front door, designed by Nadav Savio of Giant Ant Design.

18

Front door: In development. This is essentially how the tool looks now.

19

 Acknowledgements

Tim Appnel, Nadav Savio, Dave O'Brien, Neeharika

Gupta, Patricia Luke, David Volpi, Craig Lauer, Joan

Waltman

