
1

A Design Knowledge Management System

…for programmers?!

Mike Kuniavsky and Nadav Savio

KM World-Intranets, 2005

2

Intro: Who are we?

Hi, I'm Mike Kuniavsky, I'm a user experience designer and consultant

specializing in the strategic introduction of user-centered methods into

organizations.

I'm Nadav Savio, I'm an interface designer and co-founder of the research and
design firm Giant

Ant.

Today we’re going to talk about how we went about solving a problem, but
first some background.

3

Background

An infrastructure company

…found itself with end-user products

…which they weren’t happy with

About a year ago, a Fortune 500 company that traditionally makes
communication infrastructure products approached me with a problem. For a
number reasons, they found themselves making and selling client software in
addition to just the infrastructure they had traditionally sold. However, they
weren’t happy with these new products, and they called me to help their
development team.

I started by asking them where they felt their problems lay.

Photos by: romulusnr, Morven, Flickr

4

Aches and pains: complaints and competition

Complaints

Competitors’ features

Price pressure

Immediate causes

– Large differences in similar functionality

– “Unprofessional” look

– Shortage of programmer labor

– Debates about priority

These are symptoms, not the disease

The problems they identified were: customer and management complaints
about product functionality, that they were unable to deliver features that their
competitors have because they’re addressing these complaints, and felt
pressure from large customers to lower their prices because they could not
deliver competitive features. A vicious cycle.

In addition, they cited big differences between applications in terms of how
similar data was displayed or manipulated, a look that’s not up the standards of
the rest of their products, they felt they didn’t have enough programmers to
work on all of these problems, and they were constantly locked into debate
about functionality.

The sum total was that the applications were difficult to use, difficult to build
and made them look bad.

However, these are all just symptoms of a deeper problem…

5

The affliction: waterfall development

Spec-first development

Weaknesses of waterfall

– User involvement only in
beginning

– Dependent on initial
understanding

– Requires understanding of
complex interactions

– Making milestone over
creating value

– Very risky

– Etc.

Can’t treat this problem

directly

Basically, the core problem was they were stuck in a waterfall model of
development. Extensive (600 page) specifications determine everything down
to the labels on the buttons before any code is written. Users are only involved
in the creation of the specifications.

I believe that the waterfall model is fundamentally broken, and there are lots of
problems, but it’s a hard habit to quit: it makes everything seem like it’s going
great and the project is meeting its milestones, when in in fact it’s going badly
in all ways other than the Gantt chart. This is, however, a deeply rooted
methodology and can’t be changed instantly.

Our decision was that in order to treat the deep problem, we needed to start
with something simpler…

6

Treat the pain first: inconsistency

The most painful symptom

Inconsistency creates problems

– Products look different = “Unprofessional look”

– Wheels get reinvented = Shortage of programmer labor

– Specs are unnecessarily complex = Debates about priority

– Etc.

An additional challenge: limited UI design resources for all

the applications

We decided to stabilize the situation so that the improvement can be
introduced incrementally and consistently.

In addition, the company had very few UI designers available to design all of
the applications, and that wasn’t going to change.

The led us to the conclusion that several hundred engineers in the company
were going to have to be doing nearly all of the UI design.

7

Creating consistency: Programmers as designers?!?

The “engineer vs. designer” myth

I know you’re thinking that designers and programmers are from two different
tribes, but that’s not true. Programmers aren’t necessarily bad UI designers,
just as they aren’t (necessarily) bad shortstops or chefs. It’s just not what
they’re trained to do.

Without formally training all of the developers, we needed to come up with
some way to create consistency in the UI designs they were creating.

8

The solution: Guidelines

Consolidate best practices

Provide examples

Communicate key ideas

Shared by everyone

Best of all: consistency!

So here was the big idea: guidelines. Guidelines provide all kinds of good
things.

But there’s a problem…

9

The problem with guidelines

People’s don’t use

guidelines. Why?

– Presented as “rules”

– Rules = extra work

– Not written for audience

– Long

– Lecture rather than solve
problems

– Little incentive to comply

– Laws in disguise?

– One way communication

Good guidelines aren’t

enough

They’re not designed for

their primary audience:

developers

People don’t use guidelines.

[read guideline problems]

In other words, if we think of guidelines as a product, they’re generally
missing the needs of their audience. Programmers aren’t interested in extra
work. To make sure that we were designing guidelines for developers, we
talked to them

10

A programmer on UI Guidelines

1. Give the problem to someone else

2. Give me a way to auto-generate
the UI

3. Give me example code so I can cut
and paste

4. You design it in a way I can
understand and I will implement it

Here’s how one programmer put it when I asked him about how he’d like to
use guidelines.

We didn’t have the options to do number 1 (no resources) or 2 (magic), so we
decided to tackle a combination of 3 and 4.

Having made that decision, we made another decision that we felt was pretty
important…

11

Guidelines are a product

Taking this into account, we decided to treat the guidelines like a product, and
approach it exactly like we were developing a piece of software, with users and
competitors.

12

Guidelines are a tool

Good tools make it easier to

do the right thing than to do

the wrong thing

Documents are a tool used

by groups to communicate

Our guidelines are

– A design knowledge

management tool for
programmers, structured
like a code repository

– A social tool with which
developers can
communicate with
designers and each other

Approached this way, guidelines are a tool

Tools embody a set of constraints with them. Structuring the guidelines as a
tool with the right constraints, would inherently make it easier to follow the
guidelines.

They’re also a communication tool. Normally, they’re a one way
communication tool, but there’s no reason they can’t be a two-way
communication tool.

13

Guidelines for guidelines

1. Designed for developers.

2. Focused on tasks, rather than design elements.

3. Specific, not principles.

4. Prioritized.

5. Succinct.

What kind of product is it?

Based on user and competitive research we produced a set of Guidelines for
Guidelines. 1. The structure of a tool for them should be built

around programmer needs. 2. Focused on tasks. 3. specifics
address developers' needs better than theories. 4. Prioritized:
explicit prioritization helps make choices. Not all guidelines
have equal impact. 5. Succinct: programmers are always in a
hurry. Extra words won't get read and diagrams will not get
examined.

14

The audience consists of real people

By treating the guidelines as a product, we focus on audience

needs

– Assume they are busy

– Organize information to address their real-world scenarios

– Don’t tell them what to do, help them do it

Editorial and Graphic design matters

– Organization

– Prioritization

– Emphasis

– Orientation

– Layout

– Legibility and readability

How does that play out in actually designing a guidelines document?

When creating documentation and just trying to get it all down on paper, it’s
easy to forget that your goal is to help your audience implement the guidelines
you are writing. The antidote is to remember that there is a real human being
on the other side of the document. They want to do the right thing, but they are
also busy and they were probably just in the middle of doing something else.
By keeping this in mind, you move beyond merely documenting a system to
supporting the system’s developers, with the result that your guidelines will be
used and not just filed away on a shelf next to the Employee Handbook.

15

Before

Because we forget that there is an actual human being there, it is all-too
common to think of guidelines as the responsibility of the reader. In other
words, if all the information is written down, then it’s developers’ fault if they
get something wrong.

Here’s what the styleguide looked like when we started. There’s no structured
navigation (just embedded links). No orientation beyond the page title. No
organization or prioritization of the information. And no thought given to what
developers might actually be trying to do when they come to this page.

The assumption here is that people will read and digest the entire document.
But no one wants to curl up with an application styleguide by a cozy fire and
read it cover to cover (well, maybe someone like me or you, but that’s a
different story).

16

After

As you probably can’t quite see, we took the information, organized and
prioritized it, and provided a straightforward, but flexible structure to give it
form.

17

Simple but flexible navigation

Immediately usable

Focus on core tasks and immediate solutions, not abstract
principles

A place for all existing content

I want to focus on a few of the principles that guided our design decisions.

Overall, we wanted a structure that was simple enough to stay in the
background and flexible enough to accommodate varied content but with
enough backbone to help people dip in and find what they need quickly.

We divided the content into two primary sections: “Templates” (page-sized
design patterns) and “Components” (reusable objects smaller than a page but
larger than an individual element like a pulldown menu). We also included a
“Practices” section for design guidelines that work across multiple Templates
and Components, such as the general use of icons or buttons or colors.

18

Emphasis on functionality

Function over philosophy

Specifics over generalizations

Along with the specific guidelines, the existing content included a fair amount
of discussion of underlying principles and the reasoning behind the design
decisions.

We wanted to provide a nice home for this more philosophical information
(with the idea that some developers would want to understand the “why” of
what they were being asked to do), but we also wanted to keep it out of the
way of people merely looking for the “what.”

So we included a secondary section called “Design Principles”.

19

Structured lateral navigation

Cluster similar objects

Move between related objects

Selective linking to maximize relevance

Our simple primary sections worked nicely for a top-down navigation path, but
didn’t help much with lateral relationships or relevant offsite links.

The original guidelines we were working from followed a wiki-esque
approach, where embedded links could appear anywhere and link to anywhere.
But, while this approach is infinitely flexible, it (again) assumes people will
read through the entire document and inevitably leads to a lot of navigational
thrashing around.

Instead, we provided a structured set of lateral navigation options, appearing at
the same place on every page. Here, we offered clearly-labeled links to
associated files (such as CSS or Javascript), to parents and children, to related
topics, and finally to working examples of the item in action.

20

Graphic Design

Finally, I just wanted to say a word about graphic design. Too often, graphic
design is thought of as window-dressing, as empty style, as a “skin.” In fact,
graphic design is the practice of effective visual communication. Since
guidelines are at their core about communication, it would obviously be a
mistake to ignore their graphic design.

For example,

-We used color and typography to highlight the most important elements
throughout the guidelines..

-We used visual design to reinforce and support the site’s organization. So,
Templates always look like Templates, Components always look like
Components and so on

-We used pictures rather than only text to represent visual objects. Since
developers would be searching for things based on what they look like, we
wanted to show them rather than describing them wherever possible.

I also just wanted to note that, unlike say a product marketing site, the graphic
design here is minimal and purely functional. It is not intended ever to be
noticed, but is there to support user tasks and goals.

21

Easy, natural collaboration

So that covers the documentation aspect to this. There is also a collaboration
aspect, which was guided by three principles:

1. We wanted the guidelines to be a living document

2. We wanted developers to feel a degree of ownership over the guidelines

3. We wanted the tool to foster collaboration between developers and
designers.

From these principles came a simple but effective solution: We built the tool
on the MovableType weblog publishing platform which allowed us to
include straightforward blog-style comments on every page of the
guidelines.

So, when you’re looking at the page for a given item, you see another
developer’s suggestion for modifications or a link to relevant code or a
request for clarification. By including the ability to comment right on each
page (rather than in a separate forum, or, worse still, leaving them to
languish in email), we opened the document itself to modification by the
people using it.

To further support this idea of a living guidelines document, whenever a
comment is posted, an email goes out to a distribution list of the designers
and managers responsible for the guidelines. This means that the

22

But that still doesn’t address the root cause!

All this work is still only part of the story. Creating consistency is a starting
point to organizational change. The real goal is to change the development
culture so that it’s more flexible and better at managing risk…

23

Long-term care: agile development

Rapid iteration

Focus on user goals

Continuous communication

More info:
http://en.wikipedia.org/wiki/Agile_software_development

We did this by example, and built the system in a way that introduces ideas of
flexibility, user-centered development and risk management into the
organization. We built the system using several techniques borrowed from
agile software development, we built the system using

Rapid iteration: one-week cycles

Focus on user goals: stories and prioritization; everything explicitly addressed
user goals; prioritized stories every week

Continuous Communication: IM and velocity

Photo by: elroySF, Flickr

24

Conclusions

Did it work? We don’t know yet, but are hopeful

Engineers don’t mind designing, if they’re given good tools

Practices are better than processes

Document ownership and maintenance needs to be built in

Tools are not ends in themselves. They must support

existing work practice before they can change it

Developers were excited and eager

The process of thinking about what guidelines were for, how they were
supposed to be used, why they weren’t used proved valuable. Doing that to
other practices could prove equally valuable.

Introducing practices is more effective than introducing processes. Developers
were much more eager to use this system than they were to do “more work.”
Everyone hates change, even if they hate the status quo. Having people
excited about changes already gave the project momentum it wouldn’t have
had otherwise.

25

Thanks!

Morgan Kaufmann, 2003

ISBN: 1558609237

Mike Kuniavsky

mikek@orangecone.com

Nadav Savio
nadav@giantant.com

Full case study
http://www.orangecone.com/kuniavsky_guidelines_CASE.pdf

